[KEMBALI KE MENU SEBELUMNYA]

.

Multiplexer

1. Tujuan

  • Memahami prinsip kerja Multiplexer
  • Memahami rangkaian Multiplexer dan dapat disimulasikan pada Proteus

2. Alat dan Bahan

  • Power Supply

  Battery dibutuhkan sebagai sumber daya energi agar rangkaian dapat bekerja.

  • Ground
Ground adalah titik yang dianggap sebagai titik kembalinya arus listrik arus searah atau titik kembalinya sinyal bolak balik atau titik patokan (referensi) dari berbagai titik tegangan dan sinyal listrik di dalam rangkaian elektronika.

  • IC 74151

IC 74151 merupakan salah satu dari sekian banyak kompenen multiplexer. IC 74151 memiliki 8 pin input dan juga mempunyai 3 selection dan ada pin enabled. Pada pin output terdapat 2 pin yang memilik output berlawanan.


IC 74151 merupakan IC multiplekser yang memiliki satu buah data selektor dengan delapan saluran masukan (D0 – D7) dan memiliki dua buah keluaran (Y – W).



Pada tabel kebenaran dapat dilihat bahwa:

1.  Jika pin Enable diberi logika HIGH, maka apapun masukan dan apapun keadaan pin Select maka keluaran akan selalu berlogika LOW.

2.  Jika pin Enable diberi logika LOW dan pin Select juga diberi logika LOW, maka akan ada salah satu masukan yang di salurkan ke keluaran.

3.  Keluaran pada pin W adalah kebalikan dari keluaran pin Y.


  • IC 74150


IC 74150 merupakan IC multiplekser yang memiliki satu buah data selektor dengan 16 saluran masukan (D0 – D15) dan memiliki satu saluran keluaran (W).


Pada tabel kebenaran dapat dilihat bahwa:

1.  Jika pin Enable diberi logika HIGH, maka apapun masukan dan apapun keadaan pin Select maka keluaran akan selalu berlogika LOW.

2.  Jika pin Enable diberi logika LOW dan pin Select juga diberi logika LOW, maka akan ada salah satu masukan yang di salurkan ke keluaran.

3.  Logika keluaran pada pin W adalah kebalikan dari logika masukan.


  • Inverter 



    Gerbang NOT hanya memerlukan sebuah Masukan (Input) untuk menghasilkan hanya 1 Keluaran (Output). Gerbang NOT disebut juga dengan Inverter (Pembalik) karena menghasilkan Keluaran (Output) yang berlawanan (kebalikan) dengan Masukan atau Inputnya. Berarti jika kita ingin mendapatkan Keluaran (Output) dengan nilai Logika 0 maka Input atau Masukannya harus bernilai Logika 1. Gerbang NOT biasanya dilambangkan dengan simbol minus (“-“) di atas Variabel Inputnya.

  • Gerbang logika AND ( IC 4081 )


Gerbang AND (IC 4081) memerlukan 2 atau lebih Masukan (Input) untuk menghasilkan hanya 1 Keluaran (Output). Gerbang AND akan menghasilkan Keluaran (Output) Logika 1 jika semua masukan (Input) bernilai Logika 1 dan akan menghasilkan Keluaran (Output) Logika 0 jika salah satu dari masukan (Input) bernilai Logika 0.

Konfigurasi pin : 

      -Pin 7 adalah suplai negatif
      -Pin 14 adalah suplai positif
      -Pin 1 & 2, 5 & 6, 8 & 9, 12 & 13 adalah input gerbang
      -Pin 3, 4, 10, 11 adalah keluaran gerbang


Spesifikasi  :

    - Catu daya : 3 V - 15 V
    - Fungsi : Quad 2-Input AND Gate
    - Propagation delay : 55 ns
    - Level tegangan I/O : CMOS
    - Kemasan : DIP 14-pin

  • Gerbang Logika OR ( IC 4071)


OR adalah suatu gerbang yang bertujuan untuk menghasilkan logika output berlogika 0 apabila semua inputnya berlogika 0 dan sebaliknya output berlogika 1 apabila salah satu, sebagian atau semua inputnya berlogika 1.

Konfogurasi Pin :


Spesifikasi : 
    Tegangan Suplai: 5 hingga 7V

    Tegangan Input: 5 hingga 7V

    Kisaran suhu pengoperasian = -55 ° C hingga 125 ° C

    Tersedia dalam paket SOIC 14-pin


  • Resistor


 Resistor ini digunakan pada sebagai hambatan yang resistansinya ditentukan untuk tiap-tiap cabang.           


  • Logic Probe

Alat yang digunakan untuk menganalisa logika keluaran (Boolean 1 atau 0) dari sirkuit digital.


  • Logic State 

Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan  input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya.

3. Dasar Teori 

Multiplexer atau MUX disebut juga data selector adalah rangkaian kombinasional dengan lebih dari satu jalur input, satu jalur ouput, dan lebih dari satu jalur seleksi. Ada beberapa IC multiplexer yang menyediakan output komplementer. Juga, multiplexer dalam bentuk IC hampir selalu memiliki input ENABLE atau STROBE, yang perlu aktif agar multiplexer dapat melakukan fungsi yang dimaksudkan. Multiplexer memilih informasi biner yang ada pada salah satu jalur input, tergantung pada status logika input seleksi, dan mengarahkannya ke jalur output. Jika terdapat n jalur seleksi, maka jumlah jalur input maksimum yang mungkin adalah 2^n dan multiplexer tersebut disebut sebagai multiplexer 2^n-ke-1 atau multiplexer 2^n x 1. Gambar 8.1(a) dan (b) masing-masing menunjukkan representasi rangkaian dan tabel kebenaran dari multiplexer 4-ke-1 dasar.




Gambar 8.2 dan 8.3. masing-masing menunjukkan representasi rangkaian dan tabel fungsi multiplekser 8-to-1 dan 16-ke-1. Multiplexer 8-ke-1 pada Gambar 8.2 adalah tipe IC nomor 74151 dari keluarga TTL. Ini memiliki input LOW ENABLE aktif dan menyediakan output komplementer. Gambar 8.3 mengacu pada nomor tipe IC 74150 dari keluarga TTL. Ini adalah multiplexer 16-ke-1 dengan input LOW ENABLE aktif dan output LOW aktif.

8.1.1 Bagian Dalam Multiplexer




Gambar di atas merupakan rangkaian logika kombinasional dalam multiplexer 2-to-1, tabel fungsional, dan diagram logikanya.
S = 0, ekspresi Boolean untuk output menjadi Y = I0.
S = 1,  ekspresi Boolean untuk output menjadi Y = I1.

Jadi, input I0 dan I1, masing-masing dialihkan ke output untuk S= 0 dan S = 1



Diagram logika multiplexer 4-to-1 dengan kompbinasi input 00, 01, 10 dan 11 pada jalur seleksi masing-masing I0, I1, I2, I3 ke output. Dengan operasi rangkaian diatur oleh fungsi persamaan Boolean (8.1), untuk 8-to-1 multiplexer dapat direpresentasikan dengan persamaan Boolean (8.2):




Terdapat input ENABLE yang berfungsi sebagai kontrol fungsi multiplexing. Input aktif saat berlogika 1 atau 0, tergantung input ENABLE adalah aktif HIGH atau aktif LOW, output akan aktif. Multiplexer berfungsi normal. Saat input ENABLE tidak aktif, output rusak dan permanen pada logika 0 atau 1, tergantung apakah output lengkap atau tidak lengkap. Gambar diatas adalah ENABLE yg aktif saat input HIGH.


8.1.2 Implementasi Fungsi Boolean dengan Multiplexer

Teknik paling sederhana untuk implementasinya adalah dengan menggunakan MUX 2^n-ke-1 untuk mengimplementasikan fungsi Boolean variabel-n. Baris input yang sesuai dengan masing-masing minterm yang dalam fungsi Boolean dibuat sama dengan logika "1". Minterm yang tersisa yang tidak ada dalam fungsi Boolean dinonaktifkan dengan membuat jalur input yang sesuai sama dengan logika '0'. Sebagai contoh, Gambar 8.8(a) menunjukkan penggunaan MUX 8-ke-1 untuk mengimplementasikan fungsi Boolean yang diberikan oleh persamaan.

Untuk variabel A, B, C, persamaan (8.3) dapat dituliskan menjadi: 










8.1.3 Multiplexer untuk Data Konversi Paralel ke Seri

        Meskipun data diproses secara paralel di banyak sistem digital untuk mencapai kecepatan pemrosesan yang lebih cepat, ketika datang untuk mentransmisikan data ini jarak yang relatif besar, ini dilakukan secara serial. Pengaturan paralel dalam hal ini sangat tidak diinginkan karena akan membutuhkan sejumlah besar jalur transmisi. Multiplekser dapat digunakan untuk konversi paralel-ke-serial. Gambar 8.11 menunjukkan satu pengaturan seperti itu di mana multiplekser 8-ke-1 digunakan untuk mengonversi data biner paralel delapan bit ke bentuk serial. Penghitung tiga bit mengontrol input pilihan. Saat penghitung melewati 000 hingga 111, output multiplekser melewati I0 hingga I7. Proses konversi membutuhkan total delapan siklus jam.  Dalam gambar yang ditunjukkan, penghitung tiga bit telah dibangun dengan bantuan tiga sandal jepit. Berbagai sirkuit kontra dari berbagai jenis dan kompleksitas, bagaimanapun, tersedia dalam bentuk IC. Sandal jepit dan penghitung dibahas secara rinci di Bab 10 dan 11 masing-masing.
 

8.1.4 Rangkaian Multiplexer Cascading
        Mungkin ada situasi di mana jumlah saluran input yang diinginkan tidak tersedia di multiplexer IC. Sejumlah beberapa perangkat dengan ukuran tertentu dapat digunakan untuk membangun multiplexer yang dapat menangani sejumlah besar saluran input. Misalnya, multiplexer 8-ke-1 dapat digunakan untuk membangun sirkuit multiplexer 16-ke-1 atau 32-ke-1 atau bahkan lebih besar. Langkah-langkah dasar yang harus diikuti untuk melakukan desain adalah sebagai berikut:

  1. Jika 2^n adalah jumlah jalur input pada multiplexer yang tersedia dan 2^N adalah jumlah jalur input pada multiplexer yang diinginkan, maka jumlah individu multiplexer yang diperlukan untuk membangun rangkaian multiplexer yang diinginkan adalah 2^N−n.
  2. Dari pengetahuan tentang jumlah input pemilihan multiplexer yang tersedia dan multiplexer yang diinginkan, hubungkan bit yang kurang signifikan dari input pemilihan multiplexer yang diinginkan ke input pemilihan multiplexer yang tersedia.
  3. Bit-bit yang tersisa dari input seleksi dari rangkaian multiplexer yang diinginkan digunakan untuk mengaktifkan atau menonaktifkan multiplexer individu sehingga outputnya ketika OR menghasilkan output akhir. Prosedur tersebut diilustrasikan dalam contoh penyelesaian 8.3.

4. Prosedure Percobaan

         1. Siapkan semua alat dan bahan yang diperlukan

2. Cari komonen yang diperlukan di library proteus

3. Untuk rangkaian multiplexer, memiliki 4 buah rangkaian dengan alat dan bahannya yaitu multiplexer ic 74150, INVERTER, led, gerbang logika OR,  gerbang logika AND, logicprobe dan logic state, jk flip-flop

4. Atur nilai logic state

5. Coba dijalankan rangkaian

5. Rangkaian Simulasi















6. Video



7. Download file

1. Rangkaian simulasi downlaod

2. Video download

3. HTML download

4. Datasheet logic state  download

5. Datasheet logic probe download

6. Datasheet IC 74151 download

7. Datasheet IC 4067 download

8. Datasheet T flip-flop download



Tidak ada komentar:

Posting Komentar

Sumber : Pengenalan Konsep Pembelajaran Mesin dan Deep Learning Oleh Jan Wira Gotama Putra [KEMBALI KE MENU SEBELUMNYA] ...